Interhemispheric Functional Connectivity Alterations in Diabetic Optic Neuropathy: A Resting-State Functional Magnetic Resonance Imaging Study.

Diabetes, metabolic syndrome and obesity : targets and therapy(2021)

引用 3|浏览4
暂无评分
摘要
PURPOSE:Previous research suggests that diabetic optic neuropathy (DON) can cause marked anatomical and functional variations in the brain, but to date altered functional synchronization between two functional hemispheres remains uncharacterized in DON patients. Voxel mirrored homotopic connectivity (VMHC) is a voxel-based method to evaluate the synchronism between two mirrored hemispheric by determining the functional connectivity between each voxel in one hemisphere and its counterpart. In this study, we aim to assess abnormal changes in interhemispheric functional connectivity in DON patients via the VMHC method. METHODS:The study included 28 adult DON patients (12 male, 16 female) and 28 healthy controls (12 male, 16 female) who were closely matched for sex and age. Participants were examined using resting-state functional magnetic resonance imaging. The VMHC method was applied to investigate the abnormal state in bilateral hemispheres in DON patients and the same regions in healthy controls, as well as the receiver operating characteristic (ROC) curves were used to evaluate characteristics. Associations between altered VMHC values in distinct cerebral regions and clinical features were assessed via correlational analysis. RESULTS:Markedly lower VMHC values were evident in the right temporal inferior, the left temporal inferior, the right mid-cingulum, the left mid-cingulum, the right supplementary motor region, and the left supplementary motor region in DON patients compared with healthy controls. ROC curve analysis suggested that the application of VMHC is reliable for the diagnosis of DON. CONCLUSION:Anomalous interhemispheric functional connectivity in specific brain areas caused by DON may indicate neuropathologic mechanisms of vision loss and blurry vision in patients with DON.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要