Ultrafast proton release reaction and primary photochemistry of phycocyanobilin in solution observed with fs-time-resolved mid-IR and UV/Vis spectroscopy

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES(2021)

引用 4|浏览5
暂无评分
摘要
Deactivation processes of photoexcited (λ ex = 580 nm) phycocyanobilin (PCB) in methanol were investigated by means of UV/Vis and mid-IR femtosecond (fs) transient absorption (TA) as well as static fluorescence spectroscopy, supported by density-functional-theory calculations of three relevant ground state conformers, PCB A , PCB B and PCB C , their relative electronic state energies and normal mode vibrational analysis. UV/Vis fs-TA reveals time constants of 2.0, 18 and 67 ps, describing decay of PCB B *, of PCB A * and thermal re-equilibration of PCB A , PCB B and PCB C , respectively, in line with the model by Dietzek et al. (Chem Phys Lett 515:163, 2011) and predecessors. Significant substantiation and extension of this model is achieved first via mid-IR fs-TA, i.e. identification of molecular structures and their dynamics, with time constants of 2.6, 21 and 40 ps, respectively. Second, transient IR continuum absorption (CA) is observed in the region above 1755 cm −1 (CA1) and between 1550 and 1450 cm −1 (CA2), indicative for the IR absorption of highly polarizable protons in hydrogen bonding networks (X–H … Y). This allows to characterize chromophore protonation/deprotonation processes, associated with the electronic and structural dynamics, on a molecular level. The PCB photocycle is suggested to be closed via a long living (> 1 ns), PCB C -like (i.e. deprotonated), fluorescent species.
更多
查看译文
关键词
Phycocyanobilin, Bilin, Photochemistry, Ultrafast spectroscopy, Infrared continuum absorption, Proton transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要