Aladin Laser Frequency Stability And Its Impact On The Aeolus Wind Error

ATMOSPHERIC MEASUREMENT TECHNIQUES(2021)

Cited 10|Views6
No score
Abstract
The acquisition of atmospheric wind profiles on a global scale was realized by the launch of the Aeolus satellite, carrying the unique Atmospheric LAser Doppler INstrument (ALADIN), the first Doppler wind lidar in space. One major component of ALADIN is its high-power, ultraviolet (UV) laser transmitter, which is based on an injectionseeded, frequency-tripled Nd:YAG laser and fulfills a set of demanding requirements in terms of pulse energy, pulse length, repetition rate, and spatial and spectral beam properties. In particular, the frequency stability of the laser emission is an essential parameter which determines the performance of the lidar instrument as the Doppler frequency shifts to be detected are on the order of 108 smaller than the frequency of the emitted UV light. This article reports the assessment of the ALADIN laser frequency stability and its influence on the quality of the Aeolus wind data. Excellent frequency stability with pulse-to-pulse variations of about 10MHz (root mean square) is evident for over more than 2 years of operations in space despite the permanent occurrence of short periods with significantly enhanced frequency noise (> 30 MHz). The latter were found to coincide with specific rotation speeds of the satellite's reaction wheels, suggesting that the root cause are micro-vibrations that deteriorate the laser stability on timescales of a few tens of seconds. Analysis of the Aeo- lus wind error with respect to European Centre for MediumRangeWeather Forecasts (ECMWF) model winds shows that the temporally degraded frequency stability of the ALADIN laser transmitter has only a minor influence on the wind data quality on a global scale, which is primarily due to the small percentage of wind measurements for which the frequency fluctuations are considerably enhanced. Hence, although the Mie wind bias is increased by 0.3ms(-1) at times when the frequency stability is worse than 20 MHz, the small contribution of 4% from all Mie wind results renders this effect insignificant (< 0.1ms(-1)) when all winds are considered. The impact on the Rayleigh wind bias is negligible even at high frequency noise. Similar results are demonstrated for the apparent speed of the ground returns that are measured with the Mie and Rayleigh channel of the ALADIN receiver. Here, the application of a frequency stability threshold that filters out wind observations with variations larger than 20 or 10MHz improves the accuracy of the Mie and Rayleigh ground velocities by only 0.05 and 0.10ms 1, respectively, however at the expense of useful ground data.
More
Translated text
Key words
Atmospheric
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined