Storm-Scale Dynamical Changes Of Extratropical Transition Events In Present-Day And Future High-Resolution Global Simulations

JOURNAL OF CLIMATE(2021)

引用 5|浏览4
暂无评分
摘要
Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multiseasonal global simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) under present-day and projected future conditions. High resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4 degrees-5 degrees northward latitudinal shift and similar to 6-hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough-TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius-Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.
更多
查看译文
关键词
Extratropical cyclones, Tropical cyclones, Climate change, Extratropical transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要