Cooperative Conformational Change Of A Single Organic Molecule For Ultrafast Rechargeable Batteries

ACS ENERGY LETTERS(2021)

Cited 13|Views11
No score
Abstract
We unveil that the conformational change of a single organic molecule during the redox reaction leads to impressive battery performance for the first time. We propose the model material, a phenoxazin-3-one derivative, as a new redox-active bioinspired single molecule for the Li-ion rechargeable battery. The phenoxazin-3-one cathode delivered a high discharge capacity (298 mAh g(-1)) and fast rate capability (65% capacity retention at 10 C). We elaborate the redox mechanism and reaction pathway of phenoxazin-3-one during Li+-coupled redox reaction. The molecular structure alteration of phenoxazin-3-one during the lithium-coupled electron transfer reaction enables strong pi-pi interaction between 2Li-phenoxazin-3-one and carbon, which was evidenced by operando Raman spectroscopy and density functional theory calculation. Our work provides in-depth understanding about the conformational molecular switch of the single molecule during Li+-coupled redox reaction and insight into the design of a new class of organic electrode materials.
More
Translated text
Key words
single organic molecule,cooperative conformational change
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined