Conversion Of Formic Acid On Single- And Nano-Crystalline Anatase Tio2(101)

JOURNAL OF PHYSICAL CHEMISTRY C(2021)

引用 10|浏览3
暂无评分
摘要
Understanding thermochemical transformations of formic acid (FA) on metal oxide surfaces is important for many catalytical reactions. Here we study thermally induced reactions of FA on a single-crystalline and nanocrystalline anatase TiO2(101). We employ a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) to follow the FA surface intermediates and reaction products above room temperature. We find that the primary reaction products desorbing at about 300, 480, and 515 K are molecular water, carbon monoxide, and formaldehyde, respectively. Bidentate (BD) formate and bridging hydroxyl (HOb) are identified as central intermediates in the FA transformations. Bridging oxygen vacancies (V-O) are also likely participants despite their low stability at the surface. Furthermore, the parallel studies on single crystals and faceted TiO2(101) nanoparticles reveal the spectroscopic commonalities of surface species and of the thermal conversion of molecular and deprotonated forms of FA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要