Chrome Extension
WeChat Mini Program
Use on ChatGLM

Imputation of incomplete large-scale monitoring count data via penalized estimation

Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohammed A. El Agbani, Asmaa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Naoufel Hamouda, Wed A. L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos du Rau

METHODS IN ECOLOGY AND EVOLUTION(2021)

Cited 1|Views9
No score
Abstract
In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and conservation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method allows parameterization of (a) space and time factors, (b) the main effects of predictor covariates, as well as (c) space-time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package 'lori' () and recommend its use for large-scale count data, particularly in citizen science monitoring programmes.
More
Translated text
Key words
biodiversity monitoring,high&#8208,dimensional statistics,incomplete count data,missing data imputation,penalized estimation,waterbird trends in North Africa
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined