First Demonstration of heterogenous Complementary FETs utilizing Low-Temperature (200 °C) Hetero-Layers Bonding Technique (LT-HBT)

T.-Z. Hong, W.-H. Chang, A. Agarwal,Y.-T. Huang,C.-Y. Yang,T.-Y. Chu, H.-Y. Chao, Y. Chuang, S.-T. Chung, J.-H. Lin, S.-M. Luo,C.-J. Tsai, M.-J. Li,X.-R. Yu,N.-C. Lin, T.-C. Cho,P.-J. Sung,C.-J. Su, G.-L. Luo, F.-K. Hsueh,K.-L. Lin,H. Ishii,T. Irisawa,T. Maeda,C.-T. Wu, W. C.-Y. Ma, D.-D. Lu,K.-H. Kao,Y.-J. Lee, H. J.-H. Chen,C.-L. Lin,R. W. Chuang,K.-P. Huang,S. Samukawa,Y.-M. Li,J.-H. Tarng,T.-S. Chao,M. Miura,G.-W. Huang,W.-F. Wu,J.-Y. Li,J.-M. Shieh,Y.-H. Wang,W.-K. Yeh

2020 IEEE International Electron Devices Meeting (IEDM)(2020)

引用 14|浏览29
暂无评分
摘要
For the first time, we demonstrate heterogeneous complementary FETs (hCFETs) with Ge and Si channels fabricated with a layer transfer technique. The 3D channel stacking integration particularly employs a low-temperature (200 °C) hetero-layers bonding technique (LT-HBT) realized by a surface activating chemical treatment at room temperature, enabling Ge channels bonded onto Si wafers. Furthermore, to obtain symmetric performance in n/p FETs, a multi-channel structure of two-channel Si and one-channel Ge is also implemented. Wafer-scale LT-HBT is demonstrated successfully, showing new opportunities for the ultimate device footprint scaling with heterogeneous integration.
更多
查看译文
关键词
low-temperature hetero-layers bonding technique,layer transfer technique,multichannel structure,wafer-scale LT-HBT,heterogenous complementary FET,3D channel stacking integration,surface activating chemical treatment,ultimate device footprint scaling,temperature 200.0 degC,temperature 293.0 K to 298.0 K,Ge,Si
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要