Frontal Convergence And Vertical Velocity Measured By Drifters In The Alboran Sea

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS(2021)

引用 24|浏览26
暂无评分
摘要
Horizontal and vertical motions associated with mesoscale (10-100 km) and submesoscale (1-10 km) features, such as fronts, meanders, eddies, and filaments, play a critical role in redistributing physical and biogeochemical properties in the ocean. This study makes use of a multiplatform data set of 82 drifters, a Lagrangian float, and profile timeseries of temperature and salinity, obtained in a similar to 1-m/s semipermanent frontal jet in the Alboran Sea as part of CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior). Drifters drogued at similar to 1-m and 15-m depth capture the mesoscale and submesoscale circulation aligning along the perimeter of fronts due to horizontal shear. Clusters of drifters are used to estimate the kinematic properties, such as vorticity and divergence, of the flow by fitting a bivariate plane to the horizontal drifter velocities. Clusters with submesoscale length scales indicate normalized vorticity zeta/f > 1 with Coriolis frequency f and normalized divergence of delta/f similar to O(1) occurring in patches along the front, with error variance around 10%. By computing divergence from drifter clusters at two different depths, we estimate minimum vertical velocity of O(-100 m day(-1)) in the upper 10 m of the water column. These results are at least twice as large as previous estimates of vertical velocity in the region. Location, magnitude, and timing of the convergence are consistent with behavior of a Lagrangian float subducting in the center of a drifter cluster. These results improve our understanding of frontal subduction and quantify convergence and vertical velocity using Lagrangian tools.
更多
查看译文
关键词
Alboran Sea, drifters, kinematic properties, Lagrangian float, submesoscale, vertical velocity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要