Configuration Of The Earth'S Magnetotail Current Sheet

GEOPHYSICAL RESEARCH LETTERS(2021)

Cited 13|Views9
No score
Abstract
The spatial scale and intensity of Earth's magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth's magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.
More
Translated text
Key words
current sheet, magnetotail, substorm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined