The Synchronisation Of Intense Vorticity In Isotropic Turbulence

JOURNAL OF FLUID MECHANICS(2021)

引用 10|浏览1
暂无评分
摘要
The dynamics of intense vorticity is investigated by means of synchronisation experiments in direct numerical simulations of isotropic turbulence. By imposing similar dynamics above the dissipative range, the same structures of intense vorticity appear in two independent turbulent flows, showing that intense vorticity synchronises to large-scale dynamics. Remarkably, this synchronisation takes place despite the presence of chaos, and affects mostly the intense vorticity, but not so much the weak vorticity background, which remains comparatively asynchronous. These results pinpoint the role of large-scale dynamics in the formation of intense vorticity structures, the so-called 'worms', and rule out the possibility that they emerge primarily due to interactions within the dissipative range, and then grow or coalesce into elongated structures. The stretching of the vorticity vector by the large-scale rate-of-strain tensor is identified as the mechanism responsible for the synchronisation of intense vorticity, supporting the extended view of vortex stretching as a fundamental inter-scale mechanism in turbulence.
更多
查看译文
关键词
vortex dynamics, chaos, isotropic turbulence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要