Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells

Science Bulletin(2021)

引用 3|浏览17
暂无评分
摘要
Enhanced glycolysis is a distinct feature associated with numerous stem cells and cancer cells. However, little is known about its regulatory roles in gene expression and cell fate determination. Here, we confirm that glycolytic metabolism and lactate production decrease during the differentiation of mouse embryonic stem cells (mESCs). Importantly, acidic pH due to lactate accumulation can transiently prevent the silencing of mESC self-renewal in differentiation conditions. Furthermore, acidic pH partially blocks the differentiation of human ESCs (hESCs). Mechanistically, acidic pH downregulates AGO1 protein and de-represses a subset of mRNA targets of miR-290/302 family of microRNAs which facilitate the exit of naive pluripotency state in mESCs. Interestingly, AGO1 protein is also downregulated by acidic pH in cancer cells. Altogether, this study provides insights into the potential function and underlying mechanism of acidic pH in pluripotent stem cells (PSCs).
更多
查看译文
关键词
Embryonic stem cells,Pluripotency,Glycolysis,Lactate,Acidic pH
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要