Gate-defined wires in twisted bilayer graphene: From electrical detection of intervalley coherence to internally engineered Majorana modes

PHYSICAL REVIEW B(2022)

引用 6|浏览14
暂无评分
摘要
Twisted bilayer graphene (TBG) realizes a highly tunable, strongly interacting system featuring superconductivity and various correlated insulating states. We establish gate-defined wires in TBG with proximity-induced spin-orbit coupling as (i) a tool for revealing the nature of correlated insulators and (ii) a platform for Majoranabased topological qubits. We show that the band structure of a gate-defined wire immersed in an intervalley coherent correlated insulator inherits electrically detectable fingerprints of symmetry breaking native to the latter. Surrounding the wire by a superconducting TBG region on one side and an intervalley coherent correlated insulator on the other further enables the formation of Majorana zero modes-possibly even at zero magnetic field depending on the precise symmetry-breaking order present. Our proposal not only introduces a highly gate-tunable topological qubit medium relying on internally generated proximity effects but can also shed light on the Cooper-pairing mechanism in TBG.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要