Unifying the Anderson transitions in Hermitian and non-Hermitian systems

PHYSICAL REVIEW RESEARCH(2022)

引用 18|浏览10
暂无评分
摘要
Non-Hermiticity enriches the tenfold Altland-Zirnbauer symmetry class into the 38-fold symmetry class, where critical behavior of the Anderson transitions (ATs) has been extensively studied recently. Here, we propose a correspondence of the universality classes of the ATs between Hermitian and non-Hermitian systems. We illustrate that the critical exponents of the length scale in non-Hermitian systems coincide with the critical exponents in the corresponding Hermitian systems with additional chiral symmetry. A remarkable consequence of the correspondence is superuniversality, i.e., the ATs in some different symmetry classes of non-Hermitian systems are characterized by the same critical exponent. In addition to the comparisons between the known critical exponents for non-Hermitian systems and their Hermitian counterparts, we obtain the critical exponents in symmetry classes AI, AII, AII(dagger), CII dagger, and DIII in two and three dimensions. Estimated critical exponents are consistent with the proposed correspondence. According to the correspondence, some of the exponents also give useful information of the unknown critical exponents in Hermitian systems, paving a way to study the ATs of Hermitian systems by the corresponding non-Hermitian systems.
更多
查看译文
关键词
anderson transitions,non-hermitian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要