Strategies for the design of additively manufactured nanocomposite scaffolds for hard tissue regeneration

user-5f8cf9244c775ec6fa691c99(2020)

引用 12|浏览4
暂无评分
摘要
Additive manufacturing represents a powerful tool for the direct fabrication of lightweight and porous structures with tuneable properties. In this study, a fused deposition modelling/3D fibre deposition technique was considered for designing 3D nanocomposite scaffolds with specific architectures and tailored biological, mechanical, and mass transport properties. 3D poly(caprolactone) (PCL)/hydroxyapatite (HA) nanocomposite scaffolds were designed for bone tissue engineering. An optimisation design strategy for the additive manufacturing processes based on extrusion/injection methods was at first extended to the development of the PCL/HA scaffolds. Further insight into the effect of the process parameters on the mechanical properties and morphological features of the nanocomposite scaffolds was provided. The nanocomposite structures were analysed at different levels, and the possibility of designing 3D customised scaffolds for mandibular defect regeneration (i.e., symphysis and ramus) was also reported.
更多
查看译文
关键词
Nanocomposite,Nanotechnology,Materials science,Hard tissue
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要