A snapshot review—Fluctuations in quantum materials: from skyrmions to superconductivity

MRS Advances(2021)

Cited 10|Views11
No score
Abstract
By measuring a linear response function directly, such as the dynamic susceptibility, one can understand fundamental material properties. However, a fresh perspective can be offered by studying fluctuations. This can be related back to the dynamic susceptibility through the fluctuation–dissipation theorem, which relates the fluctuations in a system to its response, an alternate route to access the physics of a material. Here, we describe a new X-ray tool for material characterization that will offer an opportunity to uncover new physics in quantum materials using this theorem. We provide details of the method and discuss the requisite analysis techniques in order to capitalize on the potential to explore an uncharted region of phase space. This is followed by recent results on a topological chiral magnet, together with a discussion of current work in progress. We provide a perspective on future measurements planned for work in unconventional superconductivity. Graphical abstract We describe a new X-ray tool for material characterization that will offer an opportunity to uncover new physics in quantum materials using coherent, short-pulsed X-rays. We provide details of the method and discuss the requisite analysis techniques in order to capitalize on the potential to explore an uncharted region of phase space. This is followed by recent results on a topological chiral magnet, together with a discussion of current work in progress. We provide a perspective on future measurements planned for work in unconventional superconductivity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined