Attenuating Fibrotic Markers of Patient-Derived Dermal Fibroblasts by Thiolated Lignin Composites.

ACS biomaterials science & engineering(2021)

引用 8|浏览2
暂无评分
摘要
We report the use of phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol) (PEG)-based scaffolds. Chemoselective thiol-ene chemistry was utilized to form composites with thiolated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA). Antioxidant properties of TLS were not altered after thiolation and the levels of antioxidation were comparable to those of L-ascorbic acid. PEG-fGelMA-TLS composites significantly reduced the difference in COL1A1, ACTA2, TGFB1, and HIF1A genes between high-scarring and low-scarring hdFBs, providing the potential utility of TLS to attenuate fibrotic responses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要