Chrome Extension
WeChat Mini Program
Use on ChatGLM

Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair.

International journal of biological macromolecules(2021)

Cited 14|Views4
No score
Abstract
Meniscus cartilage has poor self-healing capacity in the inner zone and its damage leads to articular cartilage degeneration. Here we have developed hybrid constructs using polycaprolactone (PCL) and polyurethane (PU) surface modified by gelatin (G), chitosan (C), and hyaluronic acid (H) biomacromolecules and piroxicam-loaded gelatin nanofibers (PCL/PU/GCH/P). The surface of constructs was crosslinked using EDC and NHS. The scaffolds were investigated by SEM, FTIR spectroscopy, swelling test, degradation rate, mechanical tests, and in vitro piroxicam release assay. Furthermore, the cell-seeded scaffolds were evaluated by SEM, viability assay, dapi staining, cell migration, proliferation, and gene expression of chondrocytes within these scaffolds. Finally, the animal study was performed in a rabbit model. Chondrocyte and rabbit adipose-derived mesenchymal stem cells (ASCs) from the infrapatellar fat pad (Hoffa's fat pad) were used. Swelling and degradation rate were increased in the modified scaffolds. Tensile and compressive Young's modulus also were near to human native meniscus tissue. The highest expression level of chondrocyte marker genes was observed for the PCL/PU/GCH scaffold. A significant regeneration was obtained in rabbits treated with ASCs-loaded PCL/PU/GCH/P scaffold after 3 months. The surface-modified scaffolds with or without ASCs could successfully accelerate meniscus regeneration and exhibit potential application in meniscus tissue engineering.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined