Simultaneous Estimation Of Segmented Telescope Phasing Errors And Non-Common Path Aberrations From Adaptive-Optics-Corrected Images

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2021)

引用 2|浏览2
暂无评分
摘要
We investigate the focal plane wavefront sensing technique, known as Phase Diversity, at the scientific focal plane of a segmented mirror telescope with an adaptive optics (AO) system. We specifically consider an optical system imaging a point source in the context of (i) an artificial source within the telescope structure and (ii) from AO-corrected images of a bright star. From our simulations, we reliably disentangle segmented telescope phasing errors from non-common path aberrations (NCPA) for both a theoretical source and on-sky, AO-corrected images where we have simulated the Keck/NIRC2 system. This quantification from on-sky images is appealing, as it is sensitive to the cumulative wavefront perturbations of the entire optical train; disentanglement of phasing errors and NCPA is therefore critical, where any potential correction to the primary mirror from an estimate must contain minimal NCPA contributions. Our estimates require a 1-min sequence of short-exposure, AO-corrected images; by exploiting a slight modification to the AO-loop, we find that 75 defocused images produce reliable estimates. We demonstrate a correction from our estimates to the primary and deformable mirror results in a wavefront error reduction of up to 67 percent and 65 percent for phasing errors and NCPA, respectively. If the segment phasing errors on the Keck primary are of the order of similar to 130 nm RMS, we show we can improve the H-band Strehl ratio by up to 10 percent by using our algorithm. We conclude our technique works well to estimate NCPA alone from on-sky images, suggesting it is a promising method for any AO-system.
更多
查看译文
关键词
instrumentation: adaptive optics, telescopes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要