Inhibition of Candida albicans and Mixed Salivary Bacterial Biofilms on Antimicrobial Loaded Phosphated Poly(methyl methacrylate)

ANTIBIOTICS-BASEL(2021)

Cited 1|Views3
No score
Abstract
Biofilms play a crucial role in the development of Candida-associated denture stomatitis. Inhibition of microbial adhesion to poly(methyl methacrylate) (PMMA) and phosphate containing PMMA has been examined in this work. C. albicans and mixed salivary microbial biofilms were compared on naked and salivary pre-conditioned PMMA surfaces in the presence or absence of antimicrobials (Cetylpyridinium chloride [CPC], KSL-W, Histatin 5 [His 5]). Polymers with varying amounts of phosphate (0-25%) were tested using four C. albicans oral isolates as well as mixed salivary bacteria and 24 h biofilms were assessed for metabolic activity and confirmed using Live/Dead staining and confocal microscopy. Biofilm metabolism was reduced as phosphate density increased (15%: p = 0.004; 25%: p = 0.001). Loading of CPC on 15% phosphated disks showed a substantial decrease (p = 0.001) in biofilm metabolism in the presence or absence of a salivary pellicle. Salivary pellicle on uncharged PMMA enhanced the antimicrobial activity of CPC only. CPC also demonstrated remarkable antimicrobial activity on mixed salivary bacterial biofilms under different conditions displaying the potent efficacy of CPC (350 mu g/mL) when combined with an artificial protein pellicle (Biotene half strength).
More
Translated text
Key words
Candida albicans biofilm,mixed salivary bacterial biofilm,phosphated PMMA,antimicrobials,salivary pellicle
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined