Dopamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System

BIOMEDICINES(2021)

引用 10|浏览16
暂无评分
摘要
Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT(+/-)) and wild-type (DAT(+/+)) mice (14 +/- 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100 beta immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.
更多
查看译文
关键词
dopamine transporter,enteric nervous system,small intestine,neuromuscular contractility,confocal microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要