Molecular Phylogeny of Endophytic Fungi from Rattan (Calamus castaneus Griff.) Spines and Their Antagonistic Activities against Plant Pathogenic Fungi.

Journal of fungi (Basel, Switzerland)(2021)

Cited 10|Views7
No score
Abstract
Calamus castaneus is a common rattan palm species in the tropical forests of Peninsular Malaysia and is noticeable by the yellow-based spines that cover the stems. This study aimed to determine the prevalence of fungal endophytes within C. castaneus spines and whether they inhibit the growth of fungal pathogens. Twenty-one genera with 40 species of fungal endophytes were isolated and identified from rattan palm spines. Based on molecular identification, the most common isolates recovered from the spines were Colletotrichum (n = 19) and Diaporthe spp. (n = 18), followed by Phyllosticta spp., Xylaria sp., Trichoderma spp., Helminthosporium spp., Penicillium spp., Fusarium spp., Neopestalotiopsis spp., Arthrinium sp., Cyphellophora sp., Cladosporium spp., Curvularia sp., Bionectria sp., and Acremonium spp. Non-sporulating fungi were also identified, namely Nemania primolutea, Pidoplitchkoviella terricola, Muyocopron laterale, Acrocalymma fici, Acrocalymma medicaginis, and Endomelanconiopsis endophytica. The isolation of these endophytes showed that the spines harbor endophytic fungi. Most of the fungal endophytes inhibited the growth of several plant pathogenic fungi, with 68% of the interactions resulting in mutual inhibition, producing a clear inhibition zone of <2 mm. Our findings demonstrate the potential of the fungal endophytes from C. castaneus spines as biocontrol agents.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined