Polystyrene Thin Films Nanostructuring By Uv Femtosecond Laser Beam: From One Spot To Large Surface

NANOMATERIALS(2021)

引用 7|浏览10
暂无评分
摘要
In this work, direct irradiation by a Ti:Sapphire (100 fs) femtosecond laser beam at third harmonic (266 nm), with a moderate repetition rate (50 and 1000 Hz), was used to create regular periodic nanostructures upon polystyrene (PS) thin films. Typical Low Spatial Frequency LIPSSs (LSFLs) were obtained for 50 Hz, as well as for 1 kHz, in cases of one spot zone, and also using a line scanning irradiation. Laser beam fluence, repetition rate, number of pulses (or irradiation time), and scan velocity were optimized to lead to the formation of various periodic nanostructures. It was found that the surface morphology of PS strongly depends on the accumulation of a high number of pulses (10(3) to 10(7) pulses) at low energy (1 to 20 mu J/pulse). Additionally, heating the substrate from room temperature up to 97 degrees C during the laser irradiation modified the ripples' morphology, particularly their amplitude enhancement from 12 nm (RT) to 20 nm. Scanning electron microscopy and atomic force microscopy were used to image the morphological features of the surface structures. Laser-beam scanning at a chosen speed allowed for the generation of well-resolved ripples on the polymer film and homogeneity over a large area.
更多
查看译文
关键词
polymer thin films, femtosecond beam, laser texturing, LSFL, 2D LIPSS, substrate temperature effect, scanning processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要