Investigate On The Mechanism Of Hfo2/Si0.7ge0.3 Interface Passivation Based On Low-Temperature Ozone Oxidation And Si-Cap Methods

NANOMATERIALS(2021)

引用 9|浏览9
暂无评分
摘要
The interface passivation of the HfO2/Si0.7Ge0.3 stack is systematically investigated based on low-temperature ozone oxidation and Si-cap methods. Compared with the Al2O3/Si0.7Ge0.3 stack, the dispersive feature and interface state density (D-it) of the HfO2/Si0.7Ge0.3 stack MOS (Metal-Oxide-Semiconductor) capacitor under ozone direct oxidation (pre-O sample) increases obviously. This is because the tiny amounts of GeOx in the formed interlayer (IL) oxide layer are more likely to diffuse into HfO2 and cause the HfO2/Si0.7Ge0.3 interface to deteriorate. Moreover, a post-HfO2-deposition (post-O) ozone indirect oxidation is proposed for the HfO2/Si0.7Ge0.3 stack; it is found that compared with pre-O sample, the D-it of the post-O sample decreases by about 50% due to less GeOx available in the IL layer. This is because the amount of oxygen atoms reaching the interface of HfO2/Si0.7Ge0.3 decreases and the thickness of IL in the post-O sample also decreases. To further reduce the D-it of the HfO2/Si0.7Ge0.3 interface, a Si-cap passivation with the optimal thickness of 1 nm is developed and an excellent HfO2/Si0.7Ge0.3 interface with D-it of 1.53 x 10(11) eV(-1)cm(-2) @ E-E-v = 0.36 eV is attained. After detailed analysis of the chemical structure of the HfO2/IL/Si-cap/Si0.7Ge0.3 using X-ray photoelectron spectroscopy (XPS), it is confirmed that the excellent HfO2/Si0.7Ge0.3 interface is realized by preventing the formation of Hf-silicate/Hf-germanate and Si oxide originating from the reaction between HfO2 and Si0.7Ge0.3 substrate.
更多
查看译文
关键词
HfO2/Si0.7Ge0.3 gate stack, ozone oxidation, Si-cap, interface state density, passivation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要