Multifunctional Cuxs- And Dox-Loaded Aunr@Msio(2) Platform For Combined Melanoma Therapy With Inspired Antitumor Immunity

BIOMATERIALS SCIENCE(2021)

引用 7|浏览10
暂无评分
摘要
Combined antitumor therapies based on nanomedicines have shown efficacy in various tumor models in recent years, overcoming the disadvantages of inefficiency and undesired toxicity of traditional therapies. Herein, we present a copper sulfide- and doxorubicin-loaded gold nanorods@mesoporous SiO2 multifunctional nanocomposite (AuNR@mSiO(2)@DOX-CuxS-PEG) to integrate chemotherapy, the photothermal properties of AuNRs, and the photodynamic properties of CuxS into a single nanoplatform based on hydrophobic interaction and electrostatic attraction. Upon near-infrared light irradiation, the AuNR@mSiO(2)@DOX-CuxS-PEG nanocomposites exhibit a synergistic therapeutic effect and inhibit the in situ tumor growth and lung metastasis in a melanoma model. This occurs because of the high photothermal conversion efficiency, boosted intracellular reactive oxygen species production, and excellent doxorubicin (DOX) release, as well as an induced tumor-specific immune response. The inspired antitumor immunity was confirmed by elevated infiltration of activated T cells in tumor tissues and improved maturation and activation of dendritic cells in tumor-draining lymph nodes. This study highlights the superior antitumor therapeutic effect elicited by a multifunctional nanoplatform for skin with in situ melanoma and lung metastasis inhibition, indicating its satisfactory clinical application prospects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要