The SNO+ Experiment

SNO+ Collaboration, :, V. Albanese, R. Alves,M. R. Anderson,S. Andringa,L. Anselmo, E. Arushanova, S. Asahi,M. Askins,D. J. Auty, A. R. Back, S. Back, F. Barão, Z. Barnard, A. Barr,N. Barros,D. Bartlett,R. Bayes, C. Beaudoin,E. W. Beier, G. Berardi, A. Bialek, S. D. Biller,E. Blucher,R. Bonventre,M. Boulay,D. Braid, E. Caden, E. J. Callaghan,J. Caravaca,J. Carvalho,L. Cavalli,D. Chauhan, M. Chen, O. Chkvorets,K. J. Clark,B. Cleveland,C. Connors,D. Cookman, I. T. Coulter,M. A. Cox,D. Cressy, X. Dai, C. Darrach, B. Davis-Purcell, C. Deluce, M. M. Depatie, F. Descamps,F. Di Lodovico,J. Dittmer, A. Doxtator,N. Duhaime,F. Duncan, J. Dunger, A. D. Earle,D. Fabris,E. Falk, A. Farrugia, N. Fatemighomi,C. Felber,V. Fischer,E. Fletcher,R. Ford,K. Frankiewicz,N. Gagnon,A. Gaur, J. Gauthier, A. Gibson-Foster, K. Gilje,O. I. González-Reina,D. Gooding, P. Gorel,K. Graham,C. Grant,J. Grove,S. Grullon,E. Guillian,S. Hall,A. L. Hallin,D. Hallman,S. Hans,J. Hartnell,P. Harvey, M. Hedayatipour, W. J. Heintzelman, J. Heise,R. L. Helmer, B. Hodak, M. Hodak,M. Hood,D. Horne, B. Hreljac,J. Hu,A. S. M. Hussain,T. Iida,A. S. Inácio,C. M. Jackson, N. A. Jelley,C. J. Jillings,C. Jones,P. G. Jones,K. Kamdin,T. Kaptanoglu,J. Kaspar, K. Keeter,C. Kefelian,P. Khaghani, L. Kippenbrock, J. R. Klein, R. Knapik,J. Kofron,L. L. Kormos, S. Korte, B. Krar,C. Kraus,C. B. Krauss, T. Kroupová,K. Labe,F. Lafleur,I. Lam,C. Lan,B. J. Land,R. Lane,S. Langrock, P. Larochelle,S. Larose,A. LaTorre,I. Lawson,L. Lebanowski, G. M. Lefeuvre, E. J. Leming,A. Li,O. Li,J. Lidgard, B. Liggins,P. Liimatainen,Y. H. Lin,X. Liu,Y. Liu,V. Lozza,M. Luo,S. Maguire,A. Maio,K. Majumdar,S. Manecki,J. Maneira,R. D. Martin, E. Marzec, A. Mastbaum, A. Mathewson, N. McCauley,A. B. McDonald,K. McFarlane,P. Mekarski,M. Meyer,C. Miller,C. Mills,M. Mlejnek,E. Mony,B. Morissette,I. Morton-Blake,M. J. Mottram,S. Nae, M. Nirkko, L. J. Nolan,V. M. Novikov,H. M. O'Keeffe,E. O'Sullivan,G. D. Orebi Gann,M. J. Parnell,J. Paton,S. J. M. Peeters, T. Pershing, Z. Petriw,J. Petzoldt,L. Pickard, D. Pracsovics, G. Prior, J. C. Prouty,S. Quirk,S. Read,A. Reichold,S. Riccetto,R. Richardson, M. Rigan, I. Ritchie,A. Robertson,B. C. Robertson,J. Rose, R. Rosero,P. M. Rost,J. Rumleskie,M. A. Schumaker,M. H. Schwendener,D. Scislowski,J. Secrest,M. Seddighin,L. Segui,S. Seibert,I. Semenec,F. Shaker,T. Shantz,M. K. Sharma,T. M. Shokair,L. Sibley,J. R. Sinclair,K. Singh, P. Skensved,M. Smiley,T. Sonley,A. Sörensen,M. St-Amant, R. Stainforth,S. Stankiewicz,M. Strait, M. I. Stringer,A. Stripay,R. Svoboda, S. Tacchino,B. Tam, C. Tanguay,J. Tatar,L. Tian,N. Tolich,J. Tseng,H. W. C. Tseung,E. Turner,R. Van Berg,E. Vázquez-Jáuregui, J. G. C. Veinot,C. J. Virtue, B. von Krosigk,J. M. G. Walker,M. Walker, J. Wallig,S. C. Walton,J. Wang, M. Ward, O. Wasalski, J. Waterfield,J. J. Weigand,R. F. White, J. R. Wilson, T. J. Winchester,P. Woosaree,A. Wright,J. P. Yanez,M. Yeh,T. Zhang,Y. Zhang,T. Zhao,K. Zuber, A. Zummo

arxiv(2021)

引用 24|浏览14
暂无评分
摘要
The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta ($0\nu\beta\beta$) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of $^{130}$Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for $0\nu\beta\beta$ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for $0\nu\beta\beta$ decay is scalable: a future phase with high $^{130}$Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要