Transcriptome analysis reveals gene responses to herbicide, tribenuron methyl, in Brassica napus L. during seed germination

BMC GENOMICS(2021)

Cited 7|Views3
No score
Abstract
Background Tribenuron methyl (TBM) is an herbicide that inhibits sulfonylurea acetolactate synthase (ALS) and is one of the most widely used broad-leaved herbicides for crop production. However, soil residues or drifting of the herbicide spray might affect the germination and growth of rapeseed, Brassica napus , so it is imperative to understand the response mechanism of rape to TBM during germination. The aim of this study was to use transcriptome analysis to reveal the gene responses in herbicide-tolerant rapeseed to TBM stress during seed germination. Results 2414, 2286, and 1068 differentially expressed genes (DEGs) were identified in TBM-treated resistant vs sensitive lines, treated vs. control sensitive lines, treated vs. control resistant lines, respectively. GO analysis showed that most DEGs were annotated to the oxidation-reduction pathways and catalytic activity. KEGG enrichment was mainly involved in plant-pathogen interactions, α-linolenic acid metabolism, glucosinolate biosynthesis, and phenylpropanoid biosynthesis. Based on GO and KEGG enrichment, a total of 137 target genes were identified, including genes involved in biotransferase activity, response to antioxidant stress and lipid metabolism. Biotransferase genes, CYP450, ABC and GST , detoxify herbicide molecules through physical or biochemical processes. Antioxidant genes, RBOH, WRKY, CDPK, MAPK, CAT, and POD regulate plant tolerance by transmitting ROS signals and triggering antioxidant enzyme expression. Lipid-related genes and hormone-related genes were also found, such as LOX3, ADH1, JAZ6, BIN2 and ERF , and they also played an important role in herbicide resistance. Conclusions This study provides insights for selecting TBM-tolerant rapeseed germplasm and exploring the molecular mechanism of TBM tolerance during germination.
More
Translated text
Key words
Tribenuron methyl,Brassica napus L.,Seed germination,Transcriptome,Physiology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined