Effective removal of heavy metals from water using porous lignin-based adsorbents.

Chemosphere(2021)

引用 49|浏览5
暂无评分
摘要
Multifunctional composite materials are the key to improving removal capacity and environmental utility. Here, the adsorbent (SLCA) was obtained by free-radical polymerization of acrylic acid with sodium lignosulfonate and citric acid. FTIR, SEM, TGA and XPS characterization methods were used to prove the structure and properties of SLCA adsorbents. The maximum uptake capacities of the optimized SLCA adsorbent is 276 mg g-1 of Cu2+ and 323 mg g-1 of Pb2+, respectively. The Langmuir isotherm and the second-order kinetic model were established to illustrate that the capture of Cu2+ and Pb2+ by the adsorbent belongs to chemisorption on the monolayer. XPS analysis confirmed that complexation and electrostatic attraction are the mechanism of pollutant removal. Not only that, as-resulting adsorbent revealed no significant adsorption cycle efficiency reduction even after 5 runs of sorption-desorption cycle, manifesting that it is of great stability and could be regarded as a promising candidate adsorbent. The purpose of this research was to develop a green lignin-based adsorbent with strong environmental protection and regeneration ability based on cheap polyacrylic resin.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要