Macropinocytosis: The Big Drinker Behind Cancer Cell Self-Consumption

AUTOPHAGY(2021)

引用 8|浏览12
暂无评分
摘要
Poorly vascularized tumors embedded within a thick desmoplastic stroma, like pancreatic ductal adenocarcinoma (PDAC), are nutritionally stressed. Such tumors are also hypoxic and rely on a number of adaptive responses, including macroautophagy/autophagy and macropinocytosis (MP), to support their bioenergetic needs. Whereas autophagy enables starved cells to recycle intracellular macromolecules via lysosomal degradation and use the liberated amino acids (AA) to fuel their metabolism, MP allows cells to take up extracellular proteins via fluid-phase endocytosis and use them as an energy source. However, how any MP-enabled organism, including the prototypical cancer cell, coordinately regulates and balances autophagy and MP is not fully understood. We recently found that inhibition of autophagy results in upregulation of MP, which enables cancer cells to overcome autophagy deficiency and continue to support their bioenergetic demands. The NFE2L2/NRF2-driven induction of MP-related genes (MRGs) is responsible for the upregulation of MP in autophagy inhibited, hypoxic, and oxidatively stressed-exposed cancer cells. Concurrent autophagy and MP blockade effectively cuts off the cancer cell's nutrient and supplies, leading to rapid tumor regression. These findings suggest MP to be an important target in cancer treatment and that shutting off the energy spigot is a promising therapeutic strategy.
更多
查看译文
关键词
Autophagy, cancer, macropinocytosis, metabolism, NRF2, PDAC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要