Automatic Image Detection Of Multi-Type Surface Defects On Wind Turbine Blades Based On Cascade Deep Learning Network

INTELLIGENT DATA ANALYSIS(2021)

引用 10|浏览13
暂无评分
摘要
A safe operation protocol of the wind blades is a critical factor to ensure the stability of a wind turbine. Sensors are most commonly applied for defect detection on wind turbine blades (WTBs). However, due to the high cost and the sensitivity to stochastic noise, computer vision-guided automatic detection remains a challenge for surface defect detection on WTBs in particularly, its accuracy in locating defects is yet to be optimized. In this paper, we developed a visual inspection model that can automatically and precisely classify and locate the surface defects, through the utilization of a deep learning framework based on the Cascade R-CNN. In order to obtain high mean average precision (mAP) according to the characteristics of the dataset, a model named Contextual Aligned-Deformable Cascade R-CNN (CAD Cascade R-CNN) using improved strategies of transfer learning, Deformable Convolution and Deformable RoI Align, as well as context information fusion is proposed and a dataset with surface defects categorized and labeled as crack, breakage and oil pollution is generated. Moreover to alleviate the problem of false detection under a complex background, an improved bisecting k-means is presented during the test process. The adaptability and generalization of the proposed CAD Cascade R-CNN model were validated by each type of defects in dataset and different IoU thresholds, whereas, each of the above improved strategies was verified by gradual ablation experiments. Finally experiments that compared with the baseline Cascade R-CNN, Faster R-CNN and YOLO-v3 demonstrate its superiority over these existing approaches with a maximum of 92.1% mAP.
更多
查看译文
关键词
Deep learning, Cascade R-CNN, surface defect detection wind turbine blades, accuracy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要