Polarization-Controlled Surface Defect Formation In A Hybrid Perovskite

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 4|浏览1
暂无评分
摘要
Hybrid perovskites have two properties that are absent in traditional inorganic photovoltaic materials, namely, polarization and mobile ionic defects, the interaction between which may introduce new features into the materials. By using the first-principles calculations, we find that the formation energies of the vacancy defects at a tetragonal MAPbI(3)(110) surface are highly related to the surface polarization. The positive total polarization and local polarization of MA facilitate the formation of surface MA vacancies, whereas the negative total polarization and local polarization of MAI are favorable for the formation of surface iodine vacancies. The phenomena can be explained quantitatively on the basis of the two kinds of Coulomb interactions between the charged defect and the polarization-induced electrostatic field. The comprehensive insights into the interaction between the polarization and the ionic defects in hybrid perovskites can provide a new avenue for defect control for high-performance perovskite solar cells via surface polarization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要