An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping

COMMUNICATIONS BIOLOGY(2021)

引用 11|浏览13
暂无评分
摘要
Optogenetic tools such as channelrhodopsin-2 (ChR2) enable the manipulation and mapping of neural circuits. However, ChR2 variants selectively transported down a neuron’s long-range axonal projections for precise presynaptic activation remain lacking. As a result, ChR2 activation is often contaminated by the spurious activation of en passant fibers that compromise the accurate interpretation of functional effects. Here, we explored the engineering of a ChR2 variant specifically localized to presynaptic axon terminals. The metabotropic glutamate receptor 2 (mGluR2) C-terminal domain fused with a proteolytic motif and axon-targeting signal (mGluR2-PA tag) localized ChR2-YFP at axon terminals without disturbing normal transmission. mGluR2-PA-tagged ChR2 evoked transmitter release in distal projection areas enabling lower levels of photostimulation. Circuit connectivity mapping in vivo with the Spike Collision Test revealed that mGluR2-PA-tagged ChR2 is useful for identifying axonal projection with significant reduction in the polysynaptic excess noise. These results suggest that the mGluR2-PA tag helps actuate trafficking to the axon terminal, thereby providing abundant possibilities for optogenetic experiments.
更多
查看译文
关键词
Molecular neuroscience,Synaptic transmission,Life Sciences,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要