Interplay Between The Reorientational Dynamics Of The B3h8- Anion And The Structure In Kb3h8

JOURNAL OF PHYSICAL CHEMISTRY C(2021)

引用 12|浏览0
暂无评分
摘要
The structure and reorientational dynamics of KB3H8 were studied by using quasielastic and inelastic neutron scattering, Raman spectroscopy, first-principles calculations, differential scanning calorimetry, and in situ synchrotron radiation powder X-ray diffraction. The results reveal the existence of a previously unknown polymorph in between the alpha'- and beta-polymorphs. Furthermore, it was found that the [B3H8](-) anion undergoes different reorientational motions in the three polymorphs alpha, alpha', and beta. In alpha-KB3H8, the [B3H8](-) anion performs 3-fold rotations in the plane created by the three boron atoms, which changes to a 2-fold rotation around the C-2 symmetry axis of the [B3H8](-) anion upon transitioning to alpha'-KB3H8. After transitioning to beta-KB3H8, the [B3H8](-) anion performs 4-fold rotations in the plane created by the three boron atoms, which indicates that the local structure of beta-KB3H8 deviates from the global cubic NaCl-type structure. The results also indicate that the high reorientational mobility of the [B3H8](-) anion facilitates the K+ cation conductivity, since the 2-orders-of-magnitude increase in the anion reorientational mobility observed between 297 and 311 K coincides with a large increase in K+ conductivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要