Cationic Alpha-Diimine Nickel And Palladium Complexes Incorporating Phenanthrene Substituents: Highly Active Ethylene Polymerization Catalysts And Mechanistic Studies Of Syn/Anti Isomerization

ORGANOMETALLICS(2020)

引用 17|浏览5
暂无评分
摘要
alpha-Diimine palladium complexes incorporating phenanthryl- and 6,7-dimethylphenanthrylimino groups have been synthesized and characterized. The (diimine)PdMeCl complexes prepared from 2,3-butanedione and acenaphthenequinone bearing the unsubstituted phenanthrylimino groups, 12a and 14a, respectively, exist as a mixtures of syn and anti isomers in a ca. 1:1 ratio. Separation and X-ray diffraction analysis of 14a-syn and 14a-anti isomers confirms the syn/anti assignments. The barrier to interconversion of 14a-syn and 14a-anti via ligand rotation, ?G?, was found to be 25.5 kcal/mol. The corresponding (diimine)PdMeCl complex prepared from acenaphthenequinone and incorporating the 6,7-dimethylphenanthrylimino group exists solely as the anti isomer, 14b, due to steric crowding which destabilizes the syn isomer. Analogous (diimine)NiBr2 complexes were prepared from 2,3-butanedione incorporating the phenanthrylimino group, 16a, and the 6,7-dimethylphenanthrylimino group, 16b. Nickel-catalyzed polymerizations of ethylene were carried out by activation of the dibromide complexes 16a,b using various aluminum alkyl activators. Complex 16a yields a bimodal distribution polymer, the low-molecular-weight fraction originating from the syn isomer and the high-molecular-weight fraction arising from the anti isomer. Polymerizations carried out by 16b yield only high-molecular-weight polymers with monomodal distributions due to the existence of a single isomer (anti) as the active catalyst. All polymers are linear or nearly so. All catalysts are highly active, but catalysts derived from 16b are somewhat more active than 16a and exhibit turnover frequencies generally over 10(6) and up to 5 x 106 per hour (40 degrees C, 27.2 atm ethylene, 15 min). Active palladium ethylene oligomerization catalysts were generated by conversion of the neutral methyl chloride complexes 14a,b to the cationic nitrile complexes 15a,b via halide abstraction.
更多
查看译文
关键词
palladium complexes,active ethylene polymerization catalysts,phenanthrene substituents
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要