Role of Solid–Solid Interfacial Energy Anisotropy in the Formation of Broken Lamellar Structures in Eutectic Systems

METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE(2020)

引用 7|浏览1
暂无评分
摘要
Eutectic solidification gives rise to a wide range of microstructures. A commonly observed morphology is the periodic arrangement of lamellar plates with well-defined orientations of the solid–solid interface in a given eutectic grain. It is typically believed that this form of morphology develops due to the presence of solid–solid interfacial energy anisotropy. In this paper, we provide evidence using phase-field simulations where our focus is on alloys where the minority phase fraction is low. Our aim is to establish the role of solid–solid interfacial energy anisotropy in the stabilization of broken lamellar structures in such systems in contrast to the formation of a rod microstructure. In this regard, we conduct phase-field simulations for different strengths of anisotropy in both constrained and extended settings, using which we clarify the mechanisms by which a lamellar arrangement gets stabilized in the presence of anisotropy in the solid–solid interfacial energy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要