Achieving Microparticles with Cell‐Instructive Surface Chemistry by Using Tunable Co‐Polymer Surfactants

Advanced Functional Materials(2020)

引用 7|浏览4
暂无评分
摘要
A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formation. This is achieved by using molecularly designed bespoke surfactants synthesized via catalytic chain transfer polymerization. This novel approach of using polymeric surfactants, often called surfmers, containing a biofunctional moiety contrasts with the more commonly employed emulsion methods. Typically, the surface chemistry of microparticles are dominated by unwanted surfactants that dilute/mask the desired surface response. Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis of particles demonstrates that the comb-graft surfactant is located on the particle surface. Biofilm experiments show how specifically engineered surface chemistries, generated by the surfactants, successfully modulate bacterial attachment to both polymer films, and microparticles. Thus, this paper outlines how the use of designed polymeric surfactants and droplet microfluidics can exert control over both the surface chemistry and size distribution of microparticle materials, demonstrating their critical importance for controlling surface-cell response.
更多
查看译文
关键词
biofilm prevention, catalytic chain transfer polymerisation, comb-graft polymers, droplet microfluidics, ToF-SIMS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要