Unveiling the roles of alumina as a sintering aid in Li‐Garnet solid electrolyte

International Journal of Energy Research(2020)

Cited 15|Views6
No score
Abstract
The superiority of garnet-type solid electrolyte makes it one of most promising candidates for all-solid-state lithium batteries. Several studies show that introduction of alumina during synthesis can greatly improve the density and ionic conductivity of garnet electrolyte Li7La3Zr2O12 (LLZO), but the reason of poor sinterability of LLZO is still unclear. In this study, we reveal that lithium carbonate, which has a high decomposition temperature and covers on the particle surface of LLZO, is the underlying reason that handicaps the sinterability of Li-Garnet electrolyte in air. The addition of alumina promotes the decomposition of Li2CO3 (down to 400 degrees C) and the concomitant product LiAlO2, as a fast Li-ion conductor, facilitates the sintering process and bulids a fast Li-ion conducting network along the grain-boundaries, significantly increasing the ionic conductivity of Li-Garnet electrolyte. By the conventional solid state sintering, the 10 mol% Al2O3 modified Li6.4La3Zr1.4Ta0.6O12 (LLZT-10Al(2)O(3)) electrolyte reaches a relative density of 96% and shows a conductivity of 0.31 mS cm(-1) at room temperature. The prepared LLZT-10Al(2)O(3) electrolyte exhibits a good wetting property toward metallic Li electrode with an interfacial resistance of 59 omega cm(2) compared to 1270 omega cm(2) for LLZT/Li. This work provides a fundamental understanding and a valuable strategy for developing high performance garnet-type electrolyte for all-solid-state lithium batteries.
More
Translated text
Key words
alumina additive, ionic conductivity, Li7La3Zr2O12 garnet electrolyte, sintering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined