Use of photodegradable inhibitors in UV‐curable compositions to form polymeric 2D‐structures by visible light

Journal of Applied Polymer Science(2020)

引用 7|浏览7
暂无评分
摘要
The process of two-wave photopolymerization of a UV-curable composition with an optically degrading inhibitor is considered. By numerical simulation, it is shown that in the composition layer uniformly exposed to UV-radiation, such systems allow getting segments with different conversion under the action of inhomogeneous visible light. Based on the data on the photopolymerization kinetics of the compositions from triethylene glycol dimethacrylate (TEGDMA) and bisphenol-A glycidyl dimethacrylate (bis-GMA) with the UV-initiator 2,2-dimethoxy-2-phenylacetophenone (DMPA), it was shown that 3,5-di-tert-butyl-o-benzoquinone (35Q) with N,N-dimethylaniline (DMA, "Aldrich", 99%) can serve as an inhibitor that degrades under action of visible radiation. Combining inhomogeneous visible light generated with a conventional DLP-projector and uniform UV-radiation of LED (365 nm) the two-wave lithographic process was implemented to create polymeric 2D-structures in 20 mu m layer of the compositions from TEGDMA (70)/bis-GMA (30)/DMPA (0.05 wt%)/35Q (0.5 wt%)/DMA (1 wt%).
更多
查看译文
关键词
applications, kinetics, photopolymerization, radical polymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要