Analytical shape recovery of a conductivity inclusion based on Faber polynomials

MATHEMATISCHE ANNALEN(2020)

Cited 7|Views3
No score
Abstract
A conductivity inclusion, inserted in a homogeneous background, induces a perturbation in the background potential. This perturbation admits a multipole expansion whose coefficients are the so-called generalized polarization tensors (GPTs). GPTs can be obtained from multistatic measurements. As a modification of GPTs, the Faber polynomial polarization tensors (FPTs) were recently introduced in two dimensions. In this study, we design two novel analytical non-iterative methods for recovering the shape of a simply connected inclusion from GPTs by employing the concept of FPTs. First, we derive an explicit expression for the coefficients of the exterior conformal mapping associated with an inclusion in a simple form in terms of GPTs, which allows us to accurately reconstruct the shape of an inclusion with extreme or near-extreme conductivity. Secondly, we provide an explicit asymptotic formula in terms of GPTs for the shape of an inclusion with arbitrary conductivity by considering the inclusion as a perturbation of its equivalent ellipse. With this formula, one can non-iteratively approximate an inclusion of general shape with arbitrary conductivity, including a straight or asymmetric shape. Numerical experiments demonstrate the validity of the proposed analytical approaches.
More
Translated text
Key words
30C35,35J05,45P05
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined