Deciphering the black box of microbial community of common effluent treatment plant through integrated metagenomics: Tackling industrial effluent

Journal of Environmental Management(2021)

引用 13|浏览1
暂无评分
摘要
Identifying the microbial community and their functional potential from different stages of common effluent treatment plants (CETP) can enhance the efficiency of wastewater treatment systems. In this study, wastewater metagenomes from 8 stages of CETP were screened for microbial diversity and gene profiling along with their corresponding degradation activities. The microbial community displayed 98.46% of bacterial species, followed by Eukarya (0.10%) and Archaea 0.02%. At the Phylum level, Proteobacteria (28.8%) was dominant, followed by Bacteroidetes (16.1%), Firmicutes (11.7%), and Fusobacteria (6.9%) which are mainly capable of degrading the aromatic compounds. Klebsiella pneumoniae, Wolinella succinogenes, Pseudomonas stutzeri, Desulfovibrio vulgaris, and Clostridium sticklandii were the most prevalent species. The functional analysis further demonstrated the presence of enzymes linked with genes/pathways known to be involved in the degradation/metabolization of aromatic compounds like benzoate, bisphenol, 1,2-dichloroethane phenylalanine. This information was further validated with the whole genome analysis of the bacteria isolated from the CETP. We anticipate that integrating both shotgun and whole-genome analyses can reveal the rich reservoir for novel enzymes and genes present in CETP effluent that can contribute to designing efficient bioremediation strategies for the environment in general CETP system, in particular.
更多
查看译文
关键词
Microbial diversity,Common effluent treatment plant (CETP),Shotgun metagenomics,Water remediation,Aromatic compounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要