Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor

NATURE BIOMEDICAL ENGINEERING(2021)

引用 61|浏览18
暂无评分
摘要
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA–Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA–Cas9 complexes that maximize gene-targeting efficiency.
更多
查看译文
关键词
Amyotrophic lateral sclerosis,Biosensors,CRISPR-Cas systems,Graphene,Sickle cell disease,Biomedicine,general,Biomedical Engineering/Biotechnology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要