Widespread methylation quantitative trait loci and their role in schizophrenia risk

user-5f8cf7e04c775ec6fa691c92(2020)

Cited 1|Views3
No score
Abstract
DNA methylation (DNAm) regulates gene expression and may represent gene-environment interactions. Using whole genome bisulfite sequencing, we surveyed DNAm in a large sample (n=344) of human brain tissues. We identify widespread genetic influence on local methylation levels throughout the genome, with 76% of SNPs and 38% of CpGs being part of methylation quantitative trait loci (meQTLs). These associations can further be clustered into regions that are differentially methylated by a given SNP, highlighting putative functional regions that explain much of the heritability associated with risk loci. Furthermore, some CpH sites associated with genetic variation. We have established a comprehensive, single base resolution view of association between genetic variation and genomic methylation, and implicate schizophrenia GWAS-associated variants as influencing the epigenetic plasticity of the brain. One-sentence summary Most genetic variants associated with DNA methylation levels, and implicated schizophrenia GWAS variants in the human brain. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined