Nanoscale Functionalized Superconducting Transport Channels As Photon Detectors

PHYSICAL REVIEW B(2021)

引用 0|浏览6
暂无评分
摘要
Single-photon detectors have typically consisted of macroscopic materials where both the photon absorption and transduction to an electrical signal happen. Newly proposed designs suggest that large arrays of nanoscale detectors could provide improved performance in addition to decoupling the absorption and transduction processes. Here we study the properties of such a detector consisting of a nanoscale superconducting (SC) transport channel functionalized by a photon absorber. We explore two detection mechanisms based on photoinduced electrostatic gating and magnetic effects. To this end we model the narrow channel as a one-dimensional atomic chain and use a self-consistent Keldysh-Nambu Green's function formalism to describe nonequilibrium effects and SC phenomena. We consider cases where the photon creates electrostatic and magnetic changes in the absorber, as well as devices with strong and weak coupling to the metal leads. Our results indicate that the most promising case is when the SC channel is weakly coupled to the leads and in the presence of a background magnetic field, where photoexcitation of a magnetic molecule can trigger a SC-to-normal transition in the channel that leads to a change in the device current several times larger than in the case of a normal-phase channel device.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要