A High-Fat Diet Increases Activation of the Glucagon-Like Peptide-1-Producing Neurons in the Nucleus Tractus Solitarii: an Effect that is Partially Reversed by Drugs Normalizing Glycemia

Cellular and Molecular Neurobiology(2021)

引用 1|浏览6
暂无评分
摘要
Glucagon-like peptide-1 (GLP-1) is a peripheral incretin and centrally active peptide produced in the intestine and nucleus tractus solitarii (NTS), respectively. GLP-1 not only regulates metabolism but also improves cognition and is neuroprotective. While intestinal GLP-1-producing cells have been well characterized, less is known about GLP-1-producing neurons in NTS. We hypothesized that obesity-induced type 2 diabetes (T2D) impairs the function of NTS GLP-1-producing neurons and glycemia normalization counteracts this effect. We used immunohistochemistry/quantitative microscopy to investigate the number, potential atrophy, and activation (cFos-expression based) of NTS GLP-1-producing neurons, in non-diabetic versus obese/T2D mice (after 12 months of high-fat diet). NTS neuroinflammation was also assessed. The same parameters were quantified in obese/T2D mice treated from month 9 to 12 with two unrelated anti-hyperglycemic drugs: the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride. We show no effect of T2D on the number and volume but increased activation of NTS GLP-1-producing neurons. This effect was partially normalized by both anti-diabetic treatments, concurrent with decreased neuroinflammation. Increased activation of NTS GLP-1-producing neurons could represent an aberrant metabolic demand in T2D/obesity, attenuated by glycemia normalization. Whether this effect represents a pathophysiological process preceding GLP-1 signaling impairment in the CNS, remains to be investigated.
更多
查看译文
关键词
Diabetes,Dipeptidyl peptidase-4 inhibitors,GLP-1,Nucleus tractus solitarii,Obesity,Sulfonylurea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要