Chrome Extension
WeChat Mini Program
Use on ChatGLM

High-performance organic pseudocapacitors via molecular contortion

Nature Materials(2021)

Cited 88|Views17
No score
Abstract
Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g−1 at a rate of 0.5 A g−1, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g−1. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials. Pseudocapacitors exhibit charge-storage mechanisms leading to high-capacity and rapidly cycling devices. An organic system designed via molecular contortion is now shown to exhibit unprecedented electrochemical performance and stability.
More
Translated text
Key words
Electronic materials,Materials for energy and catalysis,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined