Chrome Extension
WeChat Mini Program
Use on ChatGLM

Technology-Enhanced Learning of Human Trauma Biomechanics in an Interprofessional Student Context

TEACHING AND LEARNING IN MEDICINE(2022)

Cited 4|Views7
No score
Abstract
Phenomenon This study aimed to investigate how students can develop their understanding of trauma biomechanics by means of technology-enhanced learning-an interactive visualization tool developed to enhance understanding of the biomechanics underlying an injury via dynamic imaging sequences. Approach: Students were invited to explore the content as a learning resource during an interprofessional clinical placement on an orthopedic ward. Thirty volunteer medical, nursing, and physiotherapy/occupational therapy students participated in 10 interprofessional groups of three participants. They were video recorded while interacting with learning software that was divided into five sections: Work Up, General Information, Biomechanical Case Study, Biomechanical Risk Assessment, and Treatment. Investigators probed students' learning experiences via four focus group discussions. A sociomaterial perspective was adopted, directing the analytical focus to how students' made use of talk, gestures, bodies, and material objects to understand the visualized phenomena. Findings: When connecting the visualization to a patient case, certain features of the technology stood out as important for promoting engagement and understanding trauma mechanisms. Decreased tempo, showing the directions and dynamics of trauma biomechanics in slow-motion, and color coding of the strain on the affected structures were especially important for evoking the emotional responses. The visualization tool also supported students' explorations of causal relationships between external forces and their biomedical effects. These features emphasize the sociomaterial relation between the design of the technology and the student activities. Insights: Dynamic visualization of biomechanical events has the potential to improve the understanding of injury mechanisms and specifically to identify anatomical structures at high risk of injury. Dynamic visualizations for educational purposes seem to promote possibilities for learners to contextualize visual representations relative to one's own body. Educational methods and practice need explicit attention and development in order to use the full potential of the visualization technology for learning for the health care professions.
More
Translated text
Key words
Embodied learning, visualization, biomechanics, trauma, interprofessional learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined