A Microporous Surface Containing Si3n4/Ta Microparticles Of Pekk Exhibits Both Antibacterial And Osteogenic Activity For Inducing Cellular Response And Improving Osseointegration

BIOACTIVE MATERIALS(2021)

引用 21|浏览7
暂无评分
摘要
As an implantable biomaterial, polyetherketoneketone (PEKK) exhibits good mechanical strength but it is biologically inert while tantalum (Ta) possesses outstanding osteogenic bioactivity but has a high density and elastic modulus. Also, silicon nitride (SN) has osteogenic and antibacterial activity. In this study, a microporous surface containing both SN and Ta microparticles on PEKK (STP) exhibiting excellent osteogenic and antibacterial activity was created by sulfonation. Compared with sulfonated PEKK (SPK) without microparticles, the surface properties (roughness, surface energy, hydrophilicity and protein adsorption) of STP significantly increased due to the SN and Ta particles presence on the microporous surface. In addition, STP also exhibited outstanding antibacterial activity, which inhibited bacterial growth in vitro and prevented bacterial infection in vivo because of the presence of SN particles. Moreover, the microporous surface of STP containing both SN and Ta particles remarkably induced response (e.g., proliferation and differentiation) of rat bone mesenchymal stem (rBMS) cells in vitro. Furthermore, STP significantly improved new bone regeneration and osseointegration in vivo. Regarding the induction of cellular response in vitro and improvement of osseointegration in vivo, the microporous surface containing Ta was better than the surface with SN particles. In conclusion, STP with optimized surface properties activated cellular responses in vitro, enhanced osseointegration and prevented infection in vivo. Therefore, STP possessed the dual biofunctions of excellent osteogenic and antibacterial activity, showing great potential as a bone substitute.
更多
查看译文
关键词
Silicon nitride, Tantalum, Polyetherketoneketone, Antibacterial activity, Osseointegration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要