Synergic effects of extremely low-frequency electromagnetic field and betaine on in vitro osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells

IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL(2021)

Cited 0|Views8
No score
Abstract
Human adipose tissue-derived mesenchymal stem cells (hADSCs) due to easy extraction, relative abundance, in vitro expansion and differentiation potential, frozen storage capability, and ability to secrete cytokines, compared to other stem cells, are appropriate candidate in regenerative medicine. Extremely low-frequency electromagnetic fields (ELF-EMF) and betaine are two safe factors in bone lesions repair. This study was designed to assess the osteogenic differentiation potential of these factors on hADSCs. The samples were collected from women undergoing liposuction after obtaining written consent. The hADSCs were extracted and treated with osteogenesis differentiation medium (OD) as the positive control, with OD and betaine (BET group), with OD and EMF (EMF group), and with OD and betaine and EMF (BET+EMF group) for 21 d; the negative control consisted of cells without treatment. Betaine 10 mM and EMF with 50-Hz frequency, 1-mT intensity (8 h daily), and in the form of sinus wave were used. Osteogenic differentiation was evaluated by Alizarin Red staining, alkaline phosphatase activity, calcium deposition, and real-time PCR. A significant increase in calcium deposition in the BET+EMF group was observed compared to the other groups. The activity of alkaline phosphatase in the positive control and BET groups was increased significantly compared to EMF and BET + EMF groups and a significant increase of this enzyme activity in the BET + EMF compared to EMF group was observed. The expression of RUNX2 and OCN genes in the EMF-treated groups were significantly reduced compared to the non-EMF-treated groups, and BET+EMF showed a significant increase of RUNX2 gene expression as compared the EMF group. The ELF-EMF leads to a decrease in the osteogenic differentiation and the expression RUNX2 and OCN genes in hADSCs. But osteogenic differentiation and RUNX2 gene expression were increased post-induction by betaine. The synergic effect of betaine and EMF on the osteogenic differentiation and related genes expression of hADSCs was higher than EMF.
More
Translated text
Key words
Human adipose stem cells, Electromagnetic field, Betaine, Osteogenic differentiation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined