Nationwide Surveillance On Antimicrobial Resistance Profiles Of Staphylococcus Aureus Isolated From Major Food Animal Carcasses In South Korea During 2010-2018

FOODBORNE PATHOGENS AND DISEASE(2021)

引用 5|浏览1
暂无评分
摘要
Contamination of meat with antimicrobial-resistant bacteria represents a major public health threat worldwide. In this study, we determined the antimicrobial resistance profiles and resistance trends of Staphylococcus aureus isolated from major food animal carcasses (408 cattle, 1196 pig, and 1312 chicken carcass isolates) in Korea from 2010 to 2018. Approximately 75%, 92%, and 77% of cattle, pig, and chicken carcass isolates, respectively, were resistant to at least one antimicrobial agent. Resistance to penicillin (62.1%) was the highest, followed by resistance to tetracycline (42.1%) and erythromycin (28.2%). About 30% of pig and chicken isolates were resistant to ciprofloxacin. We observed linezolid resistance only in pig isolates (2.3%). However, all S. aureus isolates were sensitive to rifampin and vancomycin. We noted an increasing but fluctuating trend of kanamycin and penicillin resistance in cattle isolates. Similarly, the chloramphenicol, ciprofloxacin, tetracycline, and trimethoprim resistance rates were increased but fluctuated through time in pig isolates. Methicillin-resistant S. aureus (MRSA) accounted for 5%, 8%, and 9% of the cattle, pig, and chicken isolates, respectively. The MRSA strains exhibited significantly high resistance rates to most of the tested antimicrobials, including ciprofloxacin, erythromycin, and tetracycline compared with methicillin-susceptible S. aureus (MSSA) strains. Notably, a relatively high percentage of MRSA strains (5.2%) recovered from pig carcasses were resistant to linezolid compared with MSSA strains (2.1%). In addition, almost 37% of the isolates were multi-drug resistant. S. aureus isolates recovered from major food animal carcasses in Korea exhibited resistance to clinically important antimicrobials, posing a public health risk.
更多
查看译文
关键词
antimicrobial resistance, foodborne pathogen, food animals, carcasses, S, aureus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要