Disruptors, a new class of oligonucleotide reagents, significantly improved PCR performance on templates containing stable intramolecular secondary structures

Analytical Biochemistry(2021)

Cited 2|Views10
No score
Abstract
Intramolecular secondary structures within templates have been shown to lower PCR performance. Whereas many approaches have been developed to mitigate such impairment on PCR, their effects can vary greatly depending on template sequences. Here we present a novel, universally effective approach to improve PCR performance involving specifically designed oligonucleotides called disruptors. A disruptor contained three functional components, an anchor designed to initiate template binding, an effector to disrupt intramolecular secondary structure, and a 3’ blocker to prevent its elongation by DNA polymerase. A functional mechanism for a disruptor to improve PCR efficiency was proposed where anchor first binds to template followed by effector-mediated strand displacement to unwind intramolecular secondary structure. Such a mechanism was consistent with the observation that anchor played a more critical role for disruptor function. As an example of potential disruptor applications, inverted terminal repeat sequences of recombinant adeno-associated virus vectors were successfully amplified in the presence of disruptors despite their well-known reputation as some of the most difficult templates for PCR amplification and Sanger sequencing due to their ultra-stable T-shaped hairpin structures. In stark contrast, both DMSO and betaine, two PCR additives routinely used to facilitate PCR amplification and Sanger sequencing of GC-rich templates, did not demonstrate any improving effect.
More
Translated text
Key words
Nucleic acid intramolecular secondary structure,Disruptor,PCR efficiency,Adeno-associated virus,Inverted terminal repeat
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined